
Video surveillance

Single Board Computer

Administrators Guide

Bjorn Hugsted

August 4, 2021

Contents

1 Abstract 3

2 Introduction 3

3 Connecting to 3.3 V serial ports 4

3.1 Pin headers on the Raspberry PI 5

3.2 Serial ports on the NanoPIs 5

3.3 FTDI TTL-232R-Rpi . 5

3.4 PIMORONI CAB0400 USB to UART cable 5

3.5 USB to TTL Serial Cable from FriendlyElec 6

4 Installing Operating Systems 6

4.1 Copying an image onto a µSD card 6

4.2 Installing Raspbian . 7

4.2.1 2018-03-13-raspbian-stretch-lite 7

4.2.2 2018-04-18-raspbian-stretch-lite 8

4.2.3 2019-04-08-raspbian-stretch-lite 8

4.2.4 2019-07-10-raspbian-buster-lite 8

4.2.5 2019-09-26-raspbian-buster-lite 9

4.2.6 2020-02-13-raspbian-buster-lite 9

1

4.2.7 2021-03-04-raspbios-buster-armhf-lite 10

4.2.8 2021-05-07-raspbios-buster-armhf-lite 10

4.3 Installing OS on NanoPIs . 10

4.3.1 nanopi-m1-plus eflasher 3.4.39 20171102 11

4.3.2 nanopi-m1-plus eflasher 4.14.0 20180124 11

4.3.3 nanopi-duo2 sd friendlycore-xenial 4.14 armhf 20191219 11

4.3.4 s5p4418-lubuntu-desktop-xenial-4.4 11

4.4 Setting passwords for root, pi, fa, and 12

5 Configuring the OS and Network interfaces 12

5.1 Set the hostname . 12

5.2 Static IP-address, but consider using DHCP 12

5.3 WiFi connection and WiFi access point 13

5.3.1 Check rfkill for blocked device 14

5.3.2 Using the nmcli to connect to an access point 14

5.3.3 Connecting WiFi with wpa cli 15

5.3.4 Editing hostapd.conf to set up an access point 17

5.4 Bridging Ethernet and WiFi 19

5.5 Dnsmasq DHCP server configuration 19

5.6 Allowing user access to device files 20

5.7 Allow root login through Secure Shell 20

6 Machines used for development 21

6.1 Creating a user for development 21

6.2 Importing directories through the Network File System . . . 21

7 Installing software on Debian and Ubuntu 22

7.1 System software . 22

7.2 WiFi accesss point and server software 22

7.3 Compilers and build tools . 23

8 V4L2 performance 23

8.1 Raspberry PI Zero W . 24

8.2 NanoPi Duo2 with OV5640 camera 25

2

9 libJPEG performance 25

10 Install, compile, and run the mjpg-streamer 25

10.1 Installing the sources . 26

10.2 Compiling the mjpg-streamer 26

10.2.1 NanoPI . 26

10.2.2 Raspberry PI . 26

10.3 Starting mjpg-streamer . 27

10.4 Testing the mjpg-streamer, and how to stop it 27

10.5 Starting mjpg-streamer at boot 28

11 The Homebrew mjpeg streamer 29

11.1 Developing for the V4L2 on Linux 29

11.2 URLs with special meaning for the streamers 29

11.3 Starting the homebrew at boot 30

1 Abstract

We describe common tasks that will need to be done for all or any computer
system used for video Surveillance. These systems consist of a variety of
hardware and software placed on different observation stations and viewsta-
tions. Although different there are a still a lot of common tasks related to
the programs and operating systems. This writing decribes tasks that are
related to the install and configuration of operating systems and programs
used with the video surveillance project.

2 Introduction

We have for a long time worked on video and still image transfer from
remotely placed camera servers. Our main focus has been to provide rea-
sonably priced observation stations that send video streams through the use
of the open source mjpg-streamer. The original developer, Andreas Wiklund
[Mjpg-streamer], seem to have left the project altogether. The project was
taken over by Tom Stoeveken [Mjpg-streamer]. What is not good is that
it seems from the SourceForge page that even this developer has no more
time to spend on that project. The project may have been transferred to
[Mjpg-streamer] under the repositori ”jacksonliam”. We tried this once, but

3

the build did not complete. Still we use a dirty trick to get hold of a working
version.

Around new year 2021 we started working on our own version of capture
and network streaming programs. We use the names ”mjpeg streamer”
and ”h264 streamer”. The reason for developing our own sources was both
to have a dependable codebase as well as gaining more understanding of
the inner workings of the Video for Linux 2 (V4L2) drivers and interface.
Currently the mjpeg streamer is working wery well on the Raspberry Pi 4
and streaming 1280x720 at 30 frames per second is no problem at all. More
about our own streamer attempts in section 11.

We also need to install and configure software for the viewstations, here we
rely on the well proven OpenCV libraries [OpenCV]. Actually viewing the
video in the netbrowser also works fine.

We employ many different types of computers - from different vendors and
manufacturers. Most of them are Single Board Computers (SBC) from
the UK based Raspberry PI [Raspberry PI] or the Chinese FriendlyElec
[FriendlyElec]. All the time we have been using some flavour of Linux, viz.
Debian or Ubuntu. We try to document all different observation stations
as well as viewstations and found that there were quite a lot of repetitions.
Therefore we have placed common tasks in this separate paper.

3 Connecting to 3.3 V serial ports

For machines with no graphics hardware and/or with network access dis-
abled by default one may have to resort to the serial ports brougth out on
pin headers on the PIs and NanoPIs. We will therefore discuss this task
before the installation of the Operating System (OS).

The logic levels on the NanoPIs and RaspberryPIs are all 3.3 V. Connecting
any 5 V logic will most likely make permanent damage. At all times we
have used a bitrate of 115200 bit/s. There should be 8 data bits, 1 stop
bit, and no parity. As there is no Request To Send or Clear to Send (RTS,
CTS) pins the flow control should NOT be RTS/CTS. As terminal emulator
program we have been very satisfied with the PuTTY [PuTTY]. One should
therefore make sure one has PuTTY [PuTTY] installed on the desktop. For
debian or Ubuntu a simple ”apt-get install putty” is enough.

When connecting two serial devices the Transmit Data (TxD) on one device
should go to Recieive Data (RxD) on the other and vica versa. The ground
connection is common. On the host computer these devices will usually have
device files like /dev/ttyUSB0, /dev/ttyUSB1, etc... One may notice that
the TxD to RxD and vica versa scheme is not as what was used in the old
days when a terminal (Date Terminal Equipement) were to be connected to

4

a modem (Data Connect Equipement). Here the cabling were straight from
TxD to TxD and what is an output pin on the DTE is an input pin on the
DCE.

3.1 Pin headers on the Raspberry PI

On the Zeros he UART0 is brought out to the header pins 6 - GND, 8 -
TxD0, and 10 - RxD0 on the PI 40 pins header. Pins 2 and 4 are +5V
power and there are also several ground pins. Remember that the UARTs
of the Raspberry PI is not enabled by default.

3.2 Serial ports on the NanoPIs

On the NanoPIs, except Duo, one of the UARTs are brought out on a special
four pin header together with a +5 V pin that can be used for powering the
NanoPI. Observe that FriendlyElect themselves do not promise that this will
work as the NanoPIs usually are specified to require a 2 A power supply. The
pins of the debug header are 1: GND, 2: +5 V, 3: UART TXD0/GPIOA4,
4: UART RXD0/GPIOA5/PWM0. On the NanoPIs the UART0 is enabled
and will give a login prompt. The NanoPi Duo and Duo2 is special. Here
there is no debug header and the serial port is brought out on pins on one
sied of the computer board.

3.3 FTDI TTL-232R-Rpi

On the FTDI [FTDI] TTL-232R-Rpi USB to serial converter the black lead
is GND while the yellow lead is RxD, and then the orange lead is TxD. This
converter is specially designed for use with the Raspberry PIs. Connect this
converter cable to the Raspberry PI as: black to pin 6, yellow to pin 8, and
orange to pin 10. The FTDI cable does not provide any +5 V power lead.
This cable may no longer be easily avaliable.

To connect to the NanoPIs use the debug port that has four pins. Pin 1 is
marked with a square and possibly the word GND. Do NOT connect any
lead to pin 2 as this is +5 V power. Connect the black lead to pin 1, the
yellow lead to pin 3, and the orage lead to pin 4.

3.4 PIMORONI CAB0400 USB to UART cable

PIMORONI does provide an USB to UART serial console cable at about
Kr 55. At his low price it may even be soldered directly to the SBC without
using a pin header. This cable also has the +5 V brought out so it may even

5

power the machine. This cable has +5 V power supply on the red lead, GND
on the black, RxD on white, and TxD on the green lead. When connected to
a Linux 4.9.0-3-amd64 machine the dmesg will report that the converter is
an PL2303 [Prolific] and what serial device file it is connected to. later cables
(after 2017) uses a different hardware, viz. the SiLabs CP210X. Lady Ada
[Lady Ada] has written a tutorial that explains this how to connect both
versions to different operating systems. Connect this cable to a Raspberry
PI as: red to pin 2 or pin 4 (or both), black to pin 6, white to pin 8, and
green to pin 10.

3.5 USB to TTL Serial Cable from FriendlyElec

This is actually not a cable at all, but a small circuit board that has an
USB connector at one end and a 4-pin header on the other. A short four-
lead cable connects the converter to the debug serial port of most NanoPIs.
One MUST make sure that the black gound pin is correctly placed. This
converter may also power the NanoPI and this may be turned on or off by
a sliding switch on the board. As USB power may not be able to power
the NanoPIs we have always put this switch in the off position. The on,off
markings are hardly visible, but off is when the slider is closest to the crystal
can.

4 Installing Operating Systems

For both the Raspberry PI and The NanoPI the installation of the Operat-
ing System (OS) is quite simple. It is is usually done by downloading the
distribution that normally is compressed as a zip archive. Then one will un-
compress the file and copy it onto a Secure Digital (SD) memory card. The
exception is the NanoPI versions with built in embedded MultiMediaCard
(eMMC). Here the distribution is a special version that contains the real
distribution to be copied to the eMMC.

4.1 Copying an image onto a µSD card

We assume that a normal computer with a Linux destribution is used for
download and storage of the different distribution images. One may use the
Graphical User Interface and extract the archine to an image or use the unzip
command from the terminal. Either way one end up with a large file that
shall be copied to the card. When the card is inserted in a cardreader/writer
a new device file appears in the /dev dircetory. One may find out what device
that has been created by looking at the output of the dmesg command. This
command does need superuser privileges and one may either use the sudo

6

before every command or log in as root with ”su -”. If we assume the
image has the name image.iso and the device is /dev/sdb the command to
use for copying to the card is: ”dd if=image.iso of=/dev/sdb bs=4M”. As
superuser one has the power to erase the hard drive of the machine so be
very sure that /dev/sdb is the µSD card and not any local disk.

The DD reports the number of bytes written as well as the write speed. The
latter may be an indication of the maximum speedf that may be obtained
when writing data to the card. Copying friendlycore operatintg system
of size 2.5 GB to a 32 GB SanDisk Extreme Pro microSDHC UHS-I Card
resulted in the report from DD: ”2468347904 bytes (2.5 GB, 2.3 GiB) copied,
126.561 s, 19.5 MB/s”. This again leads to assume that the card cannot
sustain more than 20 MB/s although this may wery well depend just as
much on the writer used.

4.2 Installing Raspbian

For the Raspberry PI there were originally just two distributions to choose
from i.e. the strech and the stretch-lite. Later also the buster and buster-
lite became avaliabe. And even later the names changed from raspbian to
raspios. All raspbian distributions seems to derived from Debian that, of
course, is derived from the Linux sources. The ”lite” is a small distribution
without any window system the ”desktop” contains the X-windowing system
and there has also appeared a ”with selected software”. The lite version
could be ideal for the obeservation stations that shall not be connected
to any display. OBSERVE: For the Rasdpberry Pi Zeros we have had
problems with connecting a keyboard to the single USB-port. A safe way
to gain access to the machine is to enable the serial port and use a serial
terminal connection. See the instructions in section 4.2.1 on how to do this.

4.2.1 2018-03-13-raspbian-stretch-lite

OBSERVE: Of the four images I list up this is the only on that I have
actually been able to make the mjpg-streamer work on. Although the 2018-
04-18 has not been tested. The image is as small as 1.7 GB. It could possibly
fit on a 2 GB card if one were avaliable. Once the image has been copied
to the µSD card do not remove the card from the writer right away. To
make the system start up the sshd server mount he boot partition and cre-
ate a file with name ssh: ”# touch ssh”. At the same time one may enable
the serial port on GPIO pin. This is done by adding the ”enable uart=1”
to the /boot/config.txt. We added the UART line just below the ”dt-
param=audio=on” and it works. Then mount the root partition and fix
up the /etc/network/interfaces to set the correct IP-address for the Eth-
ernet interface. See belov for how to do this. From user pi change thwe

7

password to SimplePiPass and then the password for root (sudo passwd
root) to SimpleRootPass. Log in as root either at the console or through
ssh from another machine.

In the raspi-config enable the camera: raspi config -> Interfacing Options
-> PI Camera. This requires reboot or shutdown and start. Once we had
problem with reboot so we use shutdown and new start.

Update ther repository list for upgrading and/or installing packages. Here
there has been problems due to resolving to IPv6 addresses. Force the apt
to use IPv4 addresses instead with: echo ’Acquire::ForceIPv4 ”true”;’ | sudo
tee /etc/apt/apt.conf.d/99force-ipv4. The problem with Internet Protocol
version 6 has nothing to do with the Raspbian servers themselves, rather
somthing in between blocks the version 6

Copy the mjpg-streamer-nanopi.tar to user root’s home directory scp mjpg-
streamer-nanopi.tar root@surv11:mjpg-streamer-nanopi.tar and untar it. tar
-xvf mjpg-streamer-nanopi.tar. Proceed to section 10 for compiling and
starting the streamer.

4.2.2 2018-04-18-raspbian-stretch-lite

This distribution has bnot been tested as video server.

4.2.3 2019-04-08-raspbian-stretch-lite

Logged in at the console. Changed pasword for pi and root. Set fixed address
in /etc/network/interfaces, set 192.168.1.2 as nameserver in /etc/reolv.conf,
set /etc/hostname to surv11. Set allow root login to yes in /etc/ssh/sshd config.
Enabled and started ssh.service with the systemctl command. Finally I did
a reboot and logged in as root through ssh. Now I should install package
libjpeg-dev, but even the first apt update did not succeed in connecting
to raspbian.raspberrypi.org. Probably because the host resolver to internet
protocol version 6. As for the 2018-03-13 set the apt to only use IPv4. Still
cannot ping the server, but update is working and finally I could install
libjpeg-dev. On this distribution the bcm2835-v4l2 was NOT loaded after
boot. After all this the image from the mjpg-streamer is garbled.

4.2.4 2019-07-10-raspbian-buster-lite

Image is 2 GiB. After enabling the camera (# raspi-config -> Intefaceing
Options -> PI Camera) the machine did not start. A power off and on
worked. Still with a rpi-update and power off and reboot the image from
the mjpg-streamer was garbled. On this distribution the bcm2835-v4l2 was

8

loaded after boot. Since it was running nicely on the 2018-03-13-raspbian-
stretch-lite I just reinstalled this version and abandoned the buster for the
time beeing. Still it is more likely that we ourselves made some mistake
than the image is actually not usable.

4.2.5 2019-09-26-raspbian-buster-lite

This image was tested on a Raspberry PI Zero W with camera mounted.
We connected the Philis 240V5QDAB display on the HDMI port. Also the
pi keyboard and mouse was connected to the OTG micro-USB through the
adapter delivered with the Raspberry Pi Zero Adaptor Kit (PIMORONI
RPI-010). We need the screen and keyboard to get ther WiFi going. It is
in principle possible to arrange for the Zero W to start up and connect to a
WiFi network without user intervention. When we applied power the boot
messages was visible and everything looked good. In the end a login prompt
was presented and we logged in as user pi with the password raspberry. At a
later ytime we were not able to get the keyboard working and had to connect
to the serial port at /dev/tty1 instead. This may be a special problem for
the Rapberry PI Zeros. Also on this distribution the bcm2835-v4l2 was
loaded after boot.

On the Raspbian the superuser has no password so one cannot log in as root.
We fixed this with $ sudo password root and set our usual root password.
Then we logged in as root which is more convenient for system setup. It
seemed like the buster lite does not have NetworkManager installed. We
used wpa cli to connect to our local network and saved the configuration.
Details are given in section 5.3.3. We did a reboot and the Zero W connected
to the same WiFi network on startup.

Since we intend to run the Zero W without any screen or keyboard the
Secure Shell must be running and we are so bold as to allow remote root
logins. We fixed up /etc/ssh/sshd config to allow root login and then did the
systemctl enable ssh.service and # systemctl start ssh.service.
Then we were able to log in remotely as root. We set the hostname to suit
our local convention, i.e. survxx or tempxx. This time we selected tempxx
and arranged for dnsmasq at server to assign the corresponding IP-address,
viz. 192.168.1.10.

4.2.6 2020-02-13-raspbian-buster-lite

This distribution was tested at 2020-03-16 and we could never make the
keyboard work on the Zero W that we used. Again this may be special
for the Zeros as the USB connection is a special On-The-Go (OTG) sort.
After enabling uart1, as described in section 4.2.1, we managed to connect
through the serial port.

9

4.2.7 2021-03-04-raspbios-buster-armhf-lite

The armhf probably indicates a ARM architecture with hard built in floating
point processor. After writing the uSD-card we connected a HDMI-monitor,
USB-keyboard and mouse (we are naturally using the raspberry keyboard
and mouse), the Ethernet connecor, and finally power. The screen came
up in text only mode (despite using the wrong HDMI connector on the
PI 4). We logged in as pi with passowrd raspberry and set the password
SimpleRootPass for root with: sudo passwd root. Logged out and then
in again as root when we in the same matter chnaged the password for user
pi to SimplePiPass. Then we went on the edit the /etc/ssh/sshd config
to allow root login through ssh and finally enabled and started sshd with:

systemctl enable ssh.service

systemctl start ssh.service

Now additional configuration may be done through ssh.

We continued with:

apt update

apt upgrade

reboot

rpi-update

Here it seems like a power on/off was needed

apt install rpi-eeprom

Which told us: already newest version

Also one should make sure the camera is enabled by using the raspi-config.
After still another reboot we compiled and ran our own mjpeg-streamer.

4.2.8 2021-05-07-raspbios-buster-armhf-lite

For configuration tasks this is same as 2021-03-04-raspbios-buster-armhf-lite

4.3 Installing OS on NanoPIs

The operating systems for the NaniPI series of machines may be downloaded
from the Friendlyelec’s download page. Follow the instructions given in
section 4.1. After the copying it is possible to mount the cards second
partition (/dev/sdb2) on /mnt and do some modifications. Remember that

10

for finding the say /etc directory this will now be <mount point>/etc rather
that plain /etc. When the <mount point> is /mnt the /etc will be /mnt/etc.

When the download is the eflasher the procedure is about the same, The
system starts as usual, but you should go on to flash the eMMC with the
images that are part of the eMMC-flasher image. When logged in as root
simply give the command: # eflasher. The eflasher will present a choice
of install images to copy to the eMMC. Make your choice and wait for the
eMMC to be written to. Then halt the machine and remove the µ-SD card.
When power is applied to the NanoPI it will start from the eMMC. It seems
to us, through experiments, that the machine will prefer µ-SD card as boot
device - when one is present.

4.3.1 nanopi-m1-plus eflasher 3.4.39 20171102

The image used for observation station with the NanoPI M1 Plus and
CAM500B camera.

4.3.2 nanopi-m1-plus eflasher 4.14.0 20180124

is used for installing the nanopi debian jessie 4.14.0 20180124 to the eMMC
of the M1 Plus. After this the ”uname -a” reports: ”Linux FriendlyELEC
4.14.0 #25 SMP Tue Jan 9 17:15:59 CST 2018 armv7l GNU/Linux”.

When inspecting the /etc/rc.local we discovered an iptables command. We
could not explain the function so we commented out that line and did a
reboot. There were no ill effects. We also disabled a number of services
we believe we do not need, viz. bluetooth, isc-dhcp-server, tightvncserver,
gpsd. Each of these were disabled with ”update-rc.d service disable” where
service is one of the listed daemons. The tightvncserver did not disable, the
format was wrong.

4.3.3 nanopi-duo2 sd friendlycore-xenial 4.14 armhf 20191219

This image is for NanoPi Duo2. We have been using this with both Video
for Linux (V4L2) and communication through the I2C bus. It seems to work
flawlessly.

4.3.4 s5p4418-lubuntu-desktop-xenial-4.4

is the image used for the Fire2A based viewstation. We used the version
dated 20180210 and built for armhf. Later we tried out a the 20180615 and
2018-09-06. For the two earlier ones there seems to be problems with the

11

screensaver. Better disable this from the preferences -> power managment
-> display and set everything to never.

4.4 Setting passwords for root, pi, fa, and ...

Freshly installed the user root may not always be accessible and superuser
privileges must be obtained through the ”sudo” command. In the case that
no password is set for user root login is prohibited. One may change this
by setting a password for root when logged in as pi, or fa with the sudo
command: ”sudo passwd root” On the NanoPIs there may be a user fa with
password fa, and/or a user pi with password pi. On the Raspbian there
should be a user pi with password raspberry. These users and passwords are
well known and when computers are mounted outside the building or WiFi
is enabled information may be stolen by no-gooders. In the unlikely case the
passwords is compromized they should not be the same as used on computers
inside the building. Also the Raspbian complains when the password for pi
has not been changed when ssh is enabled. As a very simple set of new
passwords one may use SimplePiPass for the user pi and SimpleFaPass for
the user fa. The user root may be assigned the password SimpleRootPass.
Each installation should come up with better passwords.

5 Configuring the OS and Network interfaces

When terminal access is arranged and software has been installed one must
do quite a bit of configuration to get the machine to integrate as a part of
a surveillance system. Here we go through some of the tasks to perform.

5.1 Set the hostname

One should set the host name in the file /etc/hostname. This may also
be done from the rpi-config on Raspbian or the npi-config on most of the
NanoPIs. The name should agree with the name used on the network and
possibly with the name used in an export of filesystems from a fileserver.

5.2 Static IP-address, but consider using DHCP

First consider wther this is the best solution. One may obtain the same
by using DHCP and arrange for the DHCP server to lease out specific IP-
addresses to specific MAC addresses. On our own systems we decided to go
for static IP-addresses and fill the same informastion into the hosts file on
the local Domain Name Server (DNS).

12

If one decide to set a fixed IP-address on the Ethernet connection one may
edit the /etc/network/interfaces (Remember /mnt if this is done on the
download machine) and insert the:

Set fixed IP address on Ethernet

#

auto eth0

iface eth0 inet static

address 192.168.1.50

netmask 255.255.255.0

gateway 192.168.1.1

OBSERVE that the Ethernet interface may be given another name, in which
case one need to start up the actual machine and have a look. Naturally the
adress and the gateway must be adjusted to correct values. Then leave the
directory and ”unmount /mnt”. Remove the card from the reader/writer
and insert it in the NanoPI. Then power up the machine.

When the NetworkManager is running it will update the /etc/resolv.conf
to reflect the nameserver obtained from a DHCP server. When the inter-
face is static we need to adjust the resolv.conf by hand and at the same
time disallow the NetworkManager to update this file. First one should
insert ”dns=none” in the main section of /etc/NetworkManager/Network-
Manager.conf.

[main]

plugins=ifupdown,keyfile

dns=none

Following that one should ”rm /etc/resolv.conf” and then: ”echo nameserver
192.168.1.2 > /etc/resolv.conf”. Where the IP-address must match your
nameserver. We need to first delete the resolv.conf as, when under control
of the NetworkManager, this may be a link.

5.3 WiFi connection and WiFi access point

Connecting to the WiFi network is more complicated than simply connecting
an Ethenet cable. This is a security feature as the WiFi is accessible to all
receivers within its range and one should restrict the access with private
keys and encryption.

13

5.3.1 Check rfkill for blocked device

Before anything can be done with the WiFi one must make sure the device
is not blocked by rfkill. Use the commend list to see the status of radio
devices:

root@raspberrypi:~# rfkill list

0: phy0: Wireless LAN

Soft blocked: yes

Hard blocked: no

1: hci0: Bluetooth

Soft blocked: no

Hard blocked: no

root@raspberrypi:~#

In this case the Wireless LAN was soft blocked and need to be unblocked
with: rfkill unblock 0.

5.3.2 Using the nmcli to connect to an access point

First make sure the wlan0 is not mentioned in the /etc/network/interfaces as
the NetworkManager will not touch any interface set up through interfaces.
Also eventual changes to the /etc/NetworkManager/NetworkManager.conf
should be reverted. Especially dns=none should be set to the original
dns=dnsmasq as we most likely will use DHCP when connecting WiFi. Re-
member that the NetworkManager now will control the resolv.conf. Then
to find and connect to wireless networks first, as root, find, start, scan, and
conncet the wlan0 interface:

nmcli device

DEVICE TYPE STATE CONNECTION

wlan0 wifi unavailable --

eth0 ethernet unmanaged --

ip6tnl0 ip6tnl unmanaged --

gre0 iptunnel unmanaged --

sit0 iptunnel unmanaged --

lo loopback unmanaged --

tunl0 unknown unmanaged --

nmcli radio wifi on

nmcli device wifi list

* SSID MODE SECURITY

14

Maltwhisky2.4 Infra WPA1 WPA2

4G-Mobile-WiFi-E25C Infra WPA2

DIRECT-pnC460 Series Infra WPA2

NETGEAR_VISS-Gjest Infra WPA1 WPA2

linksys Infra

nmcli device wifi connect MyWiFiNetwork \

password VerySecretPassword

Device ’wlan0’ successfully activated with

’e9d561a3-1d65-4e24-b00e-fd0716e62c37’.

Columns CHAN, RATE, SIGNAL, and BARS have been removed from the
list to fit the page. Commands and reply in the connect comamnd have been
split over more lines for same reason. The commands can be shortened, i.e.
device as dev, radio as r, ...

One more command may be useful with the NtworkManager. That is when
a lot of networks has been accessed the list of known networks may grow
long. One particular nmcli connection may be deleted from the list with:

nmcli connection delete id <SSID>

Here the <SSID> is the name of the network as shown as first column in
the list.

After successful connect with the NetworkManager the settings are stored
and at next boot the WiFi interface will be activated automatically. Al-
though we must admit that we have experienced that this does not happen.
Presently we have no more knownledge of this problem. WiFi seems now to
be a quite reliable solution. Still, when connection is lost you have no way
to log in to the machine to do diagnostics.

5.3.3 Connecting WiFi with wpa cli

We thought the wpa supplicant was superseeded by the NetworkManager,
but when installing 2018-03-13-raspbian-stretch-lite.img on the Raspberry
PI Zero W the wpa supplicant is what I found. Here the control of the
wireless connection is done through the wpa supplicant and the wpa cli is
the command line user interface. Started without parameters the wpa cli
enters interactive mode and you should select the interface, add a network,
configure it, connect, and if satisfied save the configuration. These steps are
shown below.

wpa_cli

15

> interface wlan0

Connected to interface ’wlan0.

> scan

OK

<3>CTRL-EVENT-SCAN-STARTED

<3>CTRL-EVENT-SCAN-RESULTS

<3>WPS-AP-AVAILABLE

> scan_results

bssid / / ssid

c8:be:19:5d:2a:19 Maltwhisky2.4

08:62:66:8c:a6:58 Kiara

28:28:5d:05:9a:e7 Telenor2754lag

fa:8f:ca:34:e8:15

40:a5:ef:96:be:42 ASUS

> add_network

0

> set_network 0 ssid "Maltwhisky2.4"

OK

> set_network 0 psk "VerySecretPassword"

OK

>

> enable_network 0

OK

<3>CTRL-EVENT-SCAN-STARTED

<3>CTRL-EVENT-SCAN-RESULTS

<3>WPS-AP-AVAILABLE

<3>Trying to associate with c8:be:19:5d:2a:19 \

(SSID=’Maltwhisky2.4’ freq=2412 MHz)

<3>Associated with c8:be:19:5d:2a:19

<3>WPA: Key negotiation completed with \

c8:be:19:5d:2a:19 [PTK=CCMP GTK=TKIP]

<3>CTRL-EVENT-CONNECTED - Connection to \

c8:be:19:5d:2a:19 completed [id=0 id_str=]

>

> status

bssid=c8:be:19:5d:2a:19

freq=2412

ssid=Maltwhisky2.4

id=0

mode=station

pairwise_cipher=CCMP

group_cipher=TKIP

key_mgmt=WPA2-PSK

wpa_state=COMPLETED

16

ip_address=192.168.1.190

p2p_device_address=ba:27:eb:85:68:fe

address=b8:27:eb:85:68:fe

uuid=d520f2c3-1708-5254-9fdf-b4e30f2f2f1b

>

> save_config

> quit

ifconfig

wlan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 192.168.1.190 netmask 255.255.255.0 \

broadcast 192.168.1.255

inet6 fe80::b932:dcce:bd82:e94d prefixlen 64 \

scopeid 0x20<link>

ether b8:27:eb:85:68:fe txqueuelen 1000 (Ethernet)

RX packets 28 bytes 3498 (3.4 KiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 27 bytes 4253 (4.1 KiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

#

ping storage

PING storage (192.168.1.3) 56(84) bytes of data.

64 bytes from storage (192.168.1.3): \

icmp_seq=1 ttl=64 time=16.0 ms

Observe that in the set network 0 ssid and psk the ”” are mandatory, we
tried without and got the reply FAIL. The save config command makes the
settings persistent and the WiFi will reconnect to same network at next boot.
If you are just exploring the WiFi you may choose to avoid this command.
In the scan results listing we have removed frequency, signal level, and flags
to fit the page. Other lines have been broken with a \ for the same reason.

5.3.4 Editing hostapd.conf to set up an access point

We assume the hostapd is installed. The configuration files for hostapd are
located in the /etc/hostapd/ directory, but one file that may need to be
changed is the /etc/default/hostapd. The last file contains a line that tell
hostapd where to find its configuration. You should find the line in the
#DAEMON CONF=”” and change it to
DAEMON CONF=”/etc/hostapd/hostapd.conf”
Remember to remove the comment mark #. Also insert the ”iface wlan0
inet static” in the /etc/network/interfaces to tell the NetworkManager not
to manage the wlan0 interface. The method is discussed in section 5.2.
For this to take effect you may do ”/etc/init.d/network-manager restart”

17

and check which interfaces that are managed by the NetworkManager with
”nmcli device” that should mark the wlan0 as unmanaged. The rest of the
configuration is in the /etc/hostapd/hostapd.conf and the current configu-
ration looks like:

interface=wlan0

bridge=brdg0

driver=nl80211

hw_mode=g

channel=1

ssid=SalmoNet

possible MAC address restriction

#macaddr_acl=0

#accept_mac_file=/etc/hostapd.accept

#deny_mac_file=/etc/hostapd.deny

#ieee8021x=1 # Use 802.1X authentication

encryption

auth_algs=1

wpa=2

wpa_passphrase=QueenSonja

wpa_key_mgmt=WPA-PSK

wpa_pairwise=TKIP

rsn_pairwise=CCMP

ctrl_interface=/var/run/hostapd

Only root can configure hostapd

ctrl_interface_group=0

Here the interface is the one we starts hostapd on. The interfacese will be
listed with the ”ifconfig -a” The ”bridge=brdg0” should only be used with
bridging and makes hostapd add its interface to the bridge brdg0. The driver
will usually be nl80211, but for the Adafruit hostapd and WiFi dongle it
was rtl871xdrv. The wpa passphrase is a string of ASCII caracters of length
from 8 to 63 characters. This will be used to generate the 64 hexadecimal
digits for the real key.

For testing you may use:
systemctl { start | stop | restart } hostapd.service

We had problems during testing the configuration. When the hostapd.conf
was written and we did the ”/etc/init.d/hostapd restart” the hostapd did
not run. There seems to be some kind of delay before it can start again.
Check wether the hostapd run with ”ps -el | grep hostapd”.

18

Furthermore we could not make hostapd and bridging work together on
the NanoPI NEO2 with FriendlyCore Xenial 4.14.0. We tried both the
Element14 WiPI as well as the DWL-140. We could never add the WiFi
interface to the bridge.

In the end we gave up the NEO2 and put in the M1 Plus. This is a better
SBC and even has built in WiFi. An external antenna may be connected
for improved reception.

5.4 Bridging Ethernet and WiFi

A bridge has the same functionality as a switch, but is usually implemented
on a general computer. It is used for bridging a limited number of physical
interfaces. Remember the ”bridge=brdg0” in the hostapd.conf. Possibly,
but we er are not sure, the bridge-utils need to be installed. We managed
to get a bridge set up with the following /etc/network/interfaces:

auto lo

iface lo inet loopback

iface eth0 inet manual

iface wlan0 inet manual

auto brdg0

iface brdg0 inet static

bridge_ports eth0

address 192.168.1.16

netmask 255.255.255.0

gateway 192.168.1.1

This is the first attempt so may change, but after a reboot the ”brctl show”
reported that the brdg0 existed and bridged the interfaces eth0 and wlan0.
The wlan0 is not bridged in the interfaces so this is a result of the setting
in the hostapd.conf Naturall the IP-address and more must be changed.

5.5 Dnsmasq DHCP server configuration

The file /etc/dnsmasq.conf contains the configuration for the combined
DNS- and DHCP-server dnsmasq. There are few changes to this file. Cur-
rently we only add dhcp-range at about line 158:

Uncomment this to enable the integrated DHCP server,

you need to supply the range of addresses available

19

#for lease and optionally a lease time.

If you have more than one network, you will need to

repeat this for each network

on which you want to supply DHCP service.

#dhcp-range=192.168.0.50,192.168.0.150,12h

Inserted dhcp-range 2017-03-24

dhcp-range=192.168.42.50,192.168.42.150,12h

Assign specific IP-address to a MAC-address

dhcp-host=b0:f1:ec:2d:b8:20,192.168.1.23

dhcp-host=d4:7b:b0:7a:24:ef,e4:6f:13:f3:b8:74,192.168.1.15

The dhcp-range reserves a range of addresses to be leased to clients that
reqire setup. We believe the range should be within the network used for
the wlan0 interface. Below is another way than static addresses to assign
known IP-addresses to specific clients. The dhcp-host look at MAC-address
of the client and deals out one particular IP-address. The second dhcp-
host assign the same IP-address to two different MAC-addresses. A possible
solution when a client has both WiFi and Ethernet and they will never be
used at the same time.

The dnsmasq writes its current leases to the file /var/lib/misc/dnsmaq.leases.
To find out what machines have a leased IP-address and what it is log in to
server and ”cat /var/lib/misc/dnsmasq.leases”. One could use the hardware
address to to write a specific lease into the dnsmasq.conf.

On the NanoPI NEO2 with FriendlyCore-Xenial 4.14.0 20171208 we could
not get the dnsmasq to start at boot. In the end we resorted to putting the
start command in the end of /etc/rc.local. Like this: ”/etc/init.d/dnsmasq
restart”. That actuall works, but we do not know why. Later we abandoned
the NEO2 altogether and uses the M1 Plus.

5.6 Allowing user access to device files

The ic2 device files and the serial ports are owned by root and placed in the
groups i2c and dialout respectively. To be able to access say the /dev/i2c-
0 device file the user need to be in the i2c group (or be root). To add
an existing user to an existing group one uses the adduser administrator
command. For adding the user bhu to the group i2c do (as root): adduser
bhu i2c.

5.7 Allow root login through Secure Shell

The Secure Shell (SSH) allows for a terminal window access to a networked
computer. It also is the basis for other services as the Secure Copy (SCP)

20

command. If the SSH is not enabled at all one should du the ”systemctl
enable ssh.service” command. And follow up with starting the server with
”systemctl start ssh.service”. Logging in as root throuh SSH is by default
not allowed. If one want to allow this just edit the ”/etc/ssh/sshd config”
with ”sudo vi /etc/ssh/sshd config”. If you are not familiar with vi use
your favourite editor. In the file find the line ”#PermitRootLogin prohibit-
password” and replace it or add a new line ”PermitRootLogin yes”. Restart
the server with ”systemctl restart ssh.service”.

6 Machines used for development

For amachine that is intended for software develooment we may want to
access our fileserver as a trusted user.

6.1 Creating a user for development

The user bhu should be created on machines used for development. This
user will then have access to the main fileserver bhu area. THis may be done
with the command:

useradd --uid 1010 --gid users \

--groups adm,dialout,cdrom,sudo,audio,video,plugdev,games,\

users,input,netdev,gpio,i2c,spi \

--shell /bin/bash --create-home bhu

The password is not set so use the ”passwd bhu” command to set it.

6.2 Importing directories through the Network File System

To allow access for the machine at all one must edit the /etc/exports on
the fileserver and do a ”exportfs -r” to rexport all filesystems. On the
machine that shall import the dirctories the mount points must be cre-
ated, e.g. ”mkdir /global/storage/home” and a line for mounting the re-
mote directory on this mount point must be added into /etc/fstab. A
possible such line could be: ”storage:/home /global/storage/home nfs de-
faults,nfsvers=3,noauto 0 0” Here the fileserver only supports version 3 of
the NFS and that must be made clear to the mount command. To allow for
this one may have to install nfs-common with:

The machine exporting the filesystem is storage, while the importing ma-
chine is the one where the fstab recides.

21

7 Installing software on Debian and Ubuntu

is done through the ”apt command” that is a system for keeping track
of what ”packages” are installed, and what version they are. Information
about what servers to connect to and what versions to request are written
into files in the directory /etc/apt. Specially the file /etc/apt/sources.list
is important. Before the apt-get one must have a working connection to
the Internet. Observe: We have had problems with the apt is not able to
acquire a lock on the package system. This is due to ”unattende-upgrade”
running wild.

To make the repository list up-to-date one must first use the ”apt update”
and normally this will be followed with the ”apt upgrade” that brings the
operating system and the installed package up to the lates version available.
The upgrade may take half an hour and at least at one point requires user
interaction. Generally each session of apt should start with an update.
Observe that the upgrade take quite some time as there are usuallty many
software packages in the distribution. By the way, when in doubt, there is
no harm done in trying to install a package that is already the latest version.
This will be reported and no unnecessary transfer will be done.

7.1 System software

During configuration and fault finding we need programs for finding out
what is going on and how to change it. Lacking a better name we call
this system software and it will be software for inspecting network inter-
faces, bridging network interfaces, setting up packet forewarding and Net-
work Address Translation (NAT), listing hardware, mounting remote file
systems, and more.

apt update

apt install net-tools

apt install usbutils

apt install bridge-utils

apt install iptables

apt install nfs-common

7.2 WiFi accesss point and server software

For using the SBC as a WiFi acces point we also require some sort of software
and that is the hostapd to handle the complicated protocol of accessing a
WiFi network. For serving the Distributed Host Configuration Protocol
(DHCP) on the WiFi we also need a DHCP server and a Domain Name

22

Server (DNS). We have had good experience with the dnsmasq. Install both
hostapd and dnsmasq with:

apt update

apt install hostapd

apt install dnsmasq

7.3 Compilers and build tools

Later on (section 10) we shall build the mjpg-streamer from sources. This
requires some tools and libraries, viz. build-essential, libv4l-dev, and libjpeg-
dev. The should all be installed with the apt tool:

apt update

apt install build-essential

apt install cmake

apt install libv4l-dev

apt install libjpeg-dev

apt install libopencv-dev

apt install libssl-dev

apt install libi2c-dev

Of these the build-essential installs everything needed for conmpiling and
linking programs. The cmake is a build configuration tool that is commonly
used for building software across different OSs. The libv4l-dev and libjpeg-
dev are used by mjpg-streamer. libopencv-dev is used by sveral X X Viewers
in the Video Surveillance. The libssl is used by the mechanisms for Web-
sockets that is used in the code for sending data to Javascript displays.
The libi2c-dev is needed to build programs that access the Inter-Integrated
Circuit (IIC or I2C or I2C) bus.

For creating documentation from the tex files you will need the

apt update

apt install texlive-full

but this package fetches nearly two Gigabytes of data so one will probably
only install this on the main computer.

8 V4L2 performance

We have developed a test program for measuring the raw speed (framerate)
of video capture devices through the Video for Linux (V4L) framework.

23

The same program also has the possibility to do a copy of the buffer to local
memory, a conversion from the YUYV to RGB888, and writing the image
to a file in JPEG format. The program we use is placed in the src.xpl/V4L
directory and is named v4l2-speed.cpp. It includes the videodev2 and the
central part is a loop that dequeues and queues up buffers i the V4L driver.
Fetching a buffer from the q is done with

if(ioctl(fd, VIDIOC_DQBUF, &buffers[i].info) != 0) {

perror("VIDIOC_DQBUF");

exit(1);

}

When this system call returns we do nothing with the buffer and puts it
back into the q with:

if(ioctl(fd, VIDIOC_QBUF, &buffers[i].info) < 0){

perror("VIDIOC_QBUF");

exit(1);

}

In both of these calls the buffer[i].info is a

struct buffer_t {

struct v4l2_buffer info;

void* start;

};

Where again the struct v4l2 buffer info is declared in videodev2 and start
is set as the start of the buffer that is mmapped into user space.

8.1 Raspberry PI Zero W

The Pi model Zero W is a very small SBC computer with a single-core
CPU running at 1 Ghz and sporting 512 MB of RAM. The testing was done
on the 2019-09-26-raspbian-buster-lite.img with the Raspberry PI Camera.
The resulting printout on the console is:

$ time ./v4l2-speed

Requested width, height: 640, 480, Obtained w, h: 640, 480

VIDIOC_S_PARM for setting frame rate is NOT supported

old bufrequest.count = 5, new bufrequest.count = 5

1000 frames captured

real 0m33.809s

user 0m0.028s

sys 0m0.203s

24

1000 frames in 33.8 s computes to 29.6 frames/s. Allowing for some time to
start the program we can assume 30 frames/s.

8.2 NanoPi Duo2 with OV5640 camera

The duo is a rather small SBC from FriendlyElec. It has an Allwinner
H3 processor with Quad-core Cortex-A7 Up to 1.2GHz and 512 MB DDR3
RAM. Testing was done on nanopi-duo2 sd friendlycore-xenial 4.14 armhf 20191219.img.
The results from timing one run of v2l2-jpeg is:

Requested width, height: 1280, 720, Obtained w, h: 1280, 720

use_width*use_height*2*sizeof(unsigned char): 1843200

old bufrequest.count = 3, new bufrequest.count = 3

Starting to capture and process the requested 1000 images

Captured and processed 1000 images

real 0m34.533s

user 0m0.018s

sys 0m0.064s

This computes to a frame rate of 29.0 frames/second. In our next test we
had the Duo2 copy each frame into a local buffer. We used the memcpy
library function for the copy. The buffer was preallocated and the same
buffer was overwritte for each frame. In this test the framerate ended up as
19.4 frames/second.

9 libJPEG performance

For storage or transmission of images one may consider converting the raw
images (usually YUYV pixel format) into JPEG. The libJPEG will be used
for such conversions. As a start we checked out the obtainable framerate
for two different frame sizes while running on the NanoPi Duo2. We have
found several examples that may be a starting point for our own conversion
code. The speeds we obtain for a 640x480 image is about 33 frames/second
and for 1280x720 we obtain about 11 frames/second. It may be possible to
run the conversion on more processor core to obtain higher framerates.

10 Install, compile, and run the mjpg-streamer

The mjpg-streamer is our workhorse for getting images and video from the
camera and onto the network. The mjpg-streamer acts as a Hypertext server
with its own web pages and will reply with single images or streams of Motion

25

JPEG (MJPEG). The mjpg-streamer is not a precompiled package, rather
one need to install the sources and build the program. During the build
process the libv4ldev, and libjpeg-dev will have to be available. Naturally
also the usual C++ compiler and tools.

10.1 Installing the sources

On the NanoPI the sources are installed in the home diectory of root, viz.
/root/mjpg-streamer, but we may prefer another user. For the Raspberry PI
the situation is more difficult as the mjpg-streamer at sourceforge seems to be
inactive [Mjpg-streamer]. Still there is an alternative in the github repositori
[Mjpg-streamer]. We tried this once, but the build did not complete. What
we did was to make a tar file from the sources installed by default on the
NanoPIs. To copy a file from one machine to another the most convenient
way is probably to use the scp. To copy file.tar into user pi’s home directory
at host use: scp file.tar pi@host:file.tar.

10.2 Compiling the mjpg-streamer

10.2.1 NanoPI

Log in as root and find the mjpg-streamer directory. Simply enter the di-
rectory ”cd mjpg-streamer” and do ”make clean” for good measure, then a
make. There are a lot of output and even some warnings. The build may be
tested at once with ./start.sh. This file contains a lot of examples on how
to start the streamer.

10.2.2 Raspberry PI

Use the tar file mjpg-streamer-nanopi.tar that contains the mjpg-streamer
directory from the NanoPI - after a ”make clean”. Copy this file into the
home directory of the user you prefer and do a: ”tar -xvf mjpg-streamer-
nanopi.tar” and after that ”cd mjpg-streamer”. do ”make clean” and ”make’.
On the 2018-03-13 version of raspbian the compile completes with a lot of
output and even a warning about unused variables. This version is the
only one that we have have been able to get going, but the 2018-04-18 has
not been tested. We do need to install the jpeglib.h from package libjpeg-
dev. On the 2019-04-08-raspbian-stretch-lite the NanoPI version of mjpeg-
streamer compiled without warnings, but the image was garbled. On the
2019-07-10 and 2021-03-04-raspios-buster-armhf-lite the compile fails due
to redefinition of struct statex timestamp included from utils.c line 32. I
removed this line to make it compile, but as noted in the subsection on

26

operating systems the mjpg-streamer still did not run. Also we needed to
install libjpeg-dev to complete the compile with a lot of warnings. The
720x480 image was garbled, but 1280x702 at 5 frames/s was OK.

10.3 Starting mjpg-streamer

The mjpg-streamer need the module bcm2835-v4l2 and this module needs to
be loaded if it is not built into the kernel. On later versions of the operating
system this module is present as default. One the earlier Raspberry PIs one
needed to do a ”modprobe bcm2835-v4l2”. Assuming we are in the home
directory where the mjpg-streamer has been built the commands for starting
the streamer are:

./mjpg_streamer \

-i "./input_uvc.so -y 1 -r 1280x720 -f 5 -q 90 -n" \

-o "./output_http.so -w ./www"

MJPG Streamer Version: svn rev:

i: Using V4L2 device.: /dev/video0

i: Desired Resolution: 1280 x 720

i: Frames Per Second.: 5

i: Format............: YUV

i: JPEG Quality......: 90

o: www-folder-path...: ./www/

o: HTTP TCP port.....: 8080

o: username:password.: disabled

o: commands..........: enabled

This is the output when the mjpg-streamer is started from the terminal. And
again we needed to break a few lines to fit the page This works both for the
console and for a SSH login. There has been some changes and now the ”-y
1” option seems to be important. The ”-n” option means ”do not initalize
dynctrls of Linux-UVC driver” and removes a lot of ”UVCIOC CTRL ADD
- Error” messages from the output. The ”-q 90” has to do with JPEG
quality. One could consider changing the resolution ”-r” and/or frame rate ”-
f”. FriendlyElec has put several examples of how to start the mjpg-streamer
into the file start.sh. Edit this file and fill in an uncommented line that
contains something like the line shown above. To start the mjpg streamer
simply do: ”./start.sh” in the mjpg-streamer directory. When you want to
shut down the stream simply hit CNTRL-C.

10.4 Testing the mjpg-streamer, and how to stop it

Go back to you machine with a display and keyboard, start the web-browser,
and fill in the ”http://camera-host:8080” in the address field. Here the

27

camera-host is the name of the machine running the mjpg-streamer. If
You do not have any nameserver on the network, You should use the IP-
address. The mjpg-streamer page should come up and it should be possible
to navigate to the static or streaming pages.

When you want to be able to log out the terminal and still have the mjpg-
streamer running you should use the nohup command that intercepts the
HangUP (HUP) signal when starting another program. The command line
”nohup ./start.sh > mjpg.log &” will disable hangup, redirect output to
mjpg.log, and arrange for the command to run i the background. If You
do not want to keep any log redirect into /dev/null. The start.sh is in the
mjpg-streamer directory of user root on the NanoPI. In this case you cannot
stop the program with CNTRL-C. Instead find the process ID from the ps
command and use the ”kill -term PID”.

10.5 Starting mjpg-streamer at boot

may be done by commands placed in the /etc/rc.local. Commands in this file
are for use by the system administrator and is traditionally executed after all
the normal system services are started. If the bcm2835-v4l2 is not built into
the kernel it must be loaded first. Insert the command ”modprobe bcm2835-
v4l2” in the rc.local before the commands used to start the streamer.

Remember the streamer does not terminate so the line that starts it should
end with an & to create a new process. Otherwise the boot sequence would
halt here. As the mjpg-streamer startup expects the current directory to
be the one mjpg-streamer is built in one shuold ”cd /root/mjpg-streamer”.
Here this would be /root/mjpg-streamer. Typically the /etc/rc.local would
end in

Lines for running Tom Stoevecken mjpg_streamer

#

For older Raspbian versions load the module for v4l2

At about raspios this seems to be loaded by default

modprobe bcm2835-v4l2

Enter mjpg build directoy at user pi or elsewhere

cd /home/pi/mjpg-streamer

Start the streamer - REMEMBER & at end or rc.local

will not return and hang up system initialization

#

./mjpg_streamer \

-i "./input_uvc.so -y 1 -r 1280x720 -f 5 -q 90 -n" \

28

-o "./output_http.so -w ./www" &

The very end of rc.local that must return 0

exit 0

For the later verions of sapbian and raspios the bcm2835-v4l2 seems to be
loaded as default. Again the \ has been used to break a long line. Among the
thing one may change are the framerate ”-f 5”, the resolution ”-o 1280x720”.

11 The Homebrew mjpeg streamer

As we saw the original mjpg-streamer producing more and more warnings
during compile we decided to create a mjpeg streamer of our own. This
will be considerably simpler than the one designed by Tom Stoevecken
[Mjpg-streamer], but we have the opertunity to learne more about the V4L2
driver.

11.1 Developing for the V4L2 on Linux

The V4L2 is not simple to use, but regarding flexibility and the complex-
ity of the actions performed by the driver that is expected. As sources
of information we have looked deeply into the source code for the Mjpg-
streamer originally by Tom Stoevecken [Mjpg-streamer]. The sources we
have available is currently the version provided in the /root directory of
Ubuntu on images for the NanoPi SBCs. Further information is found in
the kernel sources for Linux [Linux kernel]. Here we look into ”The Linux
kernel user-space API guide” and further to ”Linux Media Infrastructure
userspace API” that finally contains ”Part I - Video for Linux API”. Even
this is quite difficult to navigate, but again this is as expected.

11.2 URLs with special meaning for the streamers

The normal command for starting streaming from the mjpeg streamer as it is
entered in the address field of the web-browser will be: http://host:8080/-
stream. Here the host is the hostname or IP-address for the computer that
the mjpeg streamer runs on. The port number 8080 is the default port for
the streamers, but this can be changed. With this form the speed of the
V4L2 capture part is not changed. The framerate will be as it was last set.
Setting the framerate may be done before starting mjpeg streamer with the
command v4l2-cnt –set-parm 20 that in this case sets the framerate to 20
frames/s. The currently set framerate may be obtained with the command
v4l2-ctl –get-parm that prints the framerate and more.

29

We have also implemented special URLs of the form http://host:8080/-
slow where the address may end with slow, med, or fast to indicate a
requested framerate. Currently the rates corresponding to slow, med, fast
are 3, 10, 30 respectively. There is also a special link for getting one single
image: http://host:8080/single.

Currently we also implements the target info that is intended to give in-
formation about the running mjpeg streamer. This is very much a work in
progress.

11.3 Starting the homebrew at boot

We use the same method as with the Tom Stoevecken mjpg-stremer and for
the time beeing put the commands into the /etc/rc.local. Remember that
this file must have excute permission to be run at all. The few lines to start
the mjpeg streamer is:

===== Lines for running the homebrew mjpeg_streamer

#

cd /home/pi/Projects/Video_Surveillance/V4L2_Streamers

./mjpeg_streamer > /dev/null 2>&1 &

This will change to the build directory of the mjpeg streamer. Start the
mjpeg streamer in background and at the same time redirect both standard
output and standard error to /dev/null.

References

[FriendlyElec] FriendlyElec, FriendlyArm
www.friendlyarm.com

[FTDI] Future Technology Devices International Ltd.
http://www.ftdichip.com

[Lady Ada] https://learn.adafruit.com/ adafruits-raspberry-pi -lesson-
5-using-a-console-cable/ software-installation-mac

[Linux kernel] https://www.kernel.org/doc/html/latest/

[Mjpg-streamer] The mjpg-streamer team
Design Andreas Wiklund
mjpg-streamer.sf.net

30

[Mjpg-streamer] Mjpg-streamer (sourceforge)
Tom Stoeveken
WARNING: ABANDONED as 2018-02-18
https://sourceforge.net/projects/mjpg-streamer/

[Mjpg-streamer] Mjpg-streamer (Github)
Jacksonliam
https://github.com/jacksonliam/mjpg-streamer

[OpenCV] Open Computer Vision
www.opencv.org

[PIMORONI] PIMORONI
Tech Treasure for Tinkerers
https://shop.pimoroni.com

[Prolific] Prolific
http://www.prolific.com.tw/

[PuTTY] PuTTY
www.putty.org

[Raspberry PI] Raspberry PI foundation
www.raspberrypi.org

[ST] STMicroelectonics
http://www.st.com

31

